
Aon Center for Innovation and Analytics, Singapore 

The promise, peril and threat of big data

Stephen J. Mildenhall 

November 2015 



Aon Center for Innovation and Analytics, Singapore | Proprietary & Confidential 2

Data Science and the Actuary: threat or opportunity?
Donoho’s six divisions of Greater Data Science

Source:  50 Years of Data Science, David Donoho, September 19, 2015 – version 1.00

Science about 
Data Science 

Data Exploration 
and Preparation

 Become one with 
the data: 80% of 
effort

 Anomalies and 
artifacts

Data 
Representation & 
Transformation

 Database: SQL, 
noSQL, distributed, 
live data streams

 Fourier, wavelet, 
multi-scale transform

Computing with 
Data

 Important
 R, Python…be 

multi-lingual 
 Hardware issues 
 Short term 

Data Modeling

 Generative, 
inferential

 Predictive, ML

Data Visualization 
and Presentation

 Extends EDA
 Common task 

framework 

Open Science

 Closed open data
 Meta data
 Interrogating data 

Enabled by
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Big data and insurance: be careful what you wish for 

4% of 100%

Insurable

Old School

Insurable, but expensive

Flood

50% of 8%

Not Insurable

Genetics

100% of 4%
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What puts the Big in Big Data?

Traditional data

Data

n > p

Observation  

1
2
3
4

…

n

Outcomes
Features
Characteristics
1    2    …      p

 Observations = insureds
 Observed quantities

– Losses
– Age
– Sex
– Marital status
– Vehicle use
– Accident history
– Etc.

 Observations = sentences
 Observed quantities

– Word frequencies 
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What puts the Big in Big Data?

 Sentences, results radically 
improve with billions of test 
sentences 

 Global satellite images
 Tick-level financial data 

 Insurance examples
– More years of experience
– Some experience vs none!

 Computing challenge
 Same modeling approaches

Extension I: Lots more observations 

Big
Data

n >> p

Observation  

1
2

….
n

n+1

…

1,000,000 n

Outcomes
Features
Characteristics
1    2    …      p

Data
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What puts the Big in Big Data?

Extension II: Lots more parameters

Data

p > n

Observation  

1
2
3
4

…

n

Outcomes
Features
Characteristics
1    2    …      p …                                                                             10000 p

Big Data
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What puts the Big in Big Data?

Extension II: Lots more 
parameters

Data

p > n

Observation  

1
2
3
4

…

n

Outcomes
Features
Characteristics
1    2    …      p …                              10000 p

 Detailed credit history, in use 
since mid-1990s

 Minute by minute driving log, 
auto telematics 

 Home telematics 

 Genome information 

 Hyperspectral image

 Computing challenge
 New modeling challenge

Big 
Data
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Unknown, 
ignorance,  

no insurance

Partial knowledge, 
uncertainty, risk, 

insurance

How does more data impact risk and insurance?

 Incomplete 
understanding 
creates 
opportunities for 
insurance markets

 Ignorance and 
certain knowledge 
generally rule out 
insuranceComplete knowledge, 

certainty, 
managed, retained 
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How does more data impact risk and insurance? 
Extension I. More observations, bigger n

 More observations 
can create markets

 Risk measured by 
risk owners 

 Measurement 
begets management

 Risk more 
quantifiable for 
insurers

 Property catastrophe
 Cyber
 Business 

interruption 
 Terrorism
 Giga liability 
 Brand

Insurance gain 
from decreased 

ignorance

More data is a 
GOOD THING
Emerging Risk
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How does more data impact risk and insurance? 
Extension II. More parameters, bigger p

 More parameters 
may destroy 
markets in the long 
run

 More granular 
underwriting

 Less risk sharing
 Affordability and 

availability issues 

 Genomics in health 
insurance 

 Flood insurance 

Insurance loss 
from greater 

certainty

More data is a 
BAD THING
Existing Risk



Aon Center for Innovation and Analytics, Singapore | Proprietary & Confidential 11

How does more data impact risk and insurance? 

 Net growth impact 
on risk-transfer 
insurance 
indeterminate

 Different data 
models apply in 
different markets

 Disruption is 
certain 

Indeterminate net 
growth effect

More data is a 
???

Disruption
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The value of information 

 Initial state of ignorance about individual risks allows market to transfer and 
diversify all idiosyncratic risk 
– First-best outcome is for agents to fully insure their risk at the actuarially fair 

premium
– Best because of risk aversion

 For the same reason, risk aversion, information always has a nonnegative 
value for the decision maker…
– Adding information lowers the variance of the outcome distribution, X  (X | 

information) has a “less risky” distribution

 …assuming the information does not affect the other parameters of the 
environment for the decision maker 
– The information is private and not public
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Insurance market with no individual risk information 

Losses Revealed

 Actual losses 
revealed to insurer 
and insured after 
policy contracting

Ignorance

 Underwriting and 
risk management 
decisions made in 
state of minimal 
specific risk 
information 

Range of 
outcomes

…
.

Classification and 
process risk transferred
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Hirshleifer Effect: classification risk becomes uninsurable… 
making everyone worse off 

Partial Knowledge
Detailed u/w class

 Insured bears 
classification 
risk, which has 
now become 
uninsurable 

Losses Revealed

 Insured loss 
distribution revealed 
conditional on 
detailed under-
writing information

Ignorance

 Detailed information 
about insureds not 
available before 
policy contracting 

Range of 
outcomes

…
.

…
.

…
.

…
.

…
.

Classification risk 
retained by insured

Process risk transferred 
to insurer
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Link to Buhlmann greatest accuracy credibility theory 

Range of 
outcomes

…
.

…
.

…
.

…
.

…
.

Variance of 
hypothetical 

means 
 Spread of targets
 VHM 

Expected value of 
process variance 

 Accuracy of shot
 EVPV

Z  =

K  =

n 
 n  +  K

EVPV  
VHM

 Classes of business with a relatively higher VHM that is captured by the classification scheme, and 
lower EVPV (low K, high credibility) have more to lose than classes with low credibility 

 Higher frequency, lower severity classes most at risk

 Flood is a good example of a high risk class 
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Possible remedies for the Hirshleifer effect 

• Long-term contracts can provide re-classification risk, e.g. 
whole life, health, LTC

• Hard to guarantee no one has information when contract 
executed, adverse selection

• Cancellation problem: those with good information cancel  

Organize 
insurance before 

information 
becomes available

• Hard to organize, can’t uninvent technologies 
• Counterproductive, e.g. medical tests needed to ensure 

delivery of best treatment
• Prohibiting use in u/w leads to adverse selection problem with 

asymmetric information 

Ban information 
technology 

• Social security
• Private market solutions have problem of “buying a loss” 

leading to need for residual market mechanisms to be insurers 
of last resort 

Socialize risk 
through 

compulsory 
insurance
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Unraveling due to adverse selection 
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Insureds run-off, 1980 to 2009
Organic neural network fit
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Details of lognormal model

Lognormal Model of Market Unraveling, implied CV = 2.06

Year
Mu with 7.5% 

Medical Inflation
Adverse Selection 

Threshold F(x) Expense(x)
Conditional Value 

= Premium Rate Change Insureds
Insured Fall off 

Factor Implied 1-F
1980 5.438 0 0.0000 526 526 325,000 1.00 1.000
1981 5.510 69 0.1613 501 666 26.7% 272,581 0.84 0.839
1982 5.582 217 0.4381 440 1,001 50.2% 182,629 0.67 0.562
1983 5.655 490 0.6628 362 1,564 56.2% 109,577 0.60 0.337
1984 5.727 897 0.7977 292 2,343 49.8% 65,746 0.60 0.202
1985 5.799 1,344 0.8624 251 3,169 35.3% 44,708 0.68 0.138
1986 5.872 1,937 0.9065 214 4,226 33.3% 30,401 0.68 0.094
1987 5.944 2,663 0.9345 185 5,483 29.8% 21,281 0.70 0.065
1988 6.016 3,181 0.9443 179 6,403 16.8% 18,089 0.85 0.056
1989 6.089 3,786 0.9527 174 7,463 16.6% 15,375 0.85 0.047
1990 6.161 4,340 0.9574 175 8,447 13.2% 13,838 0.90 0.043
1991 6.233 4,969 0.9617 176 9,555 13.1% 12,454 0.90 0.038
1992 6.306 5,683 0.9655 177 10,801 13.0% 11,209 0.90 0.034
1993 6.378 6,491 0.9690 177 12,202 13.0% 10,088 0.90 0.031
1994 6.450 7,672 0.9738 171 14,182 16.2% 8,524 0.84 0.026
1995 6.523 9,043 0.9778 164 16,460 16.1% 7,202 0.84 0.022
1996 6.595 10,635 0.9813 158 19,077 15.9% 6,086 0.84 0.019
1997 6.667 12,478 0.9842 152 22,081 15.7% 5,142 0.84 0.016
1998 6.740 14,611 0.9866 146 25,525 15.6% 4,345 0.84 0.013
1999 6.812 17,076 0.9887 140 29,472 15.5% 3,671 0.84 0.011
2000 6.884 19,920 0.9905 134 33,989 15.3% 3,102 0.84 0.010
2001 6.956 23,197 0.9919 129 39,156 15.2% 2,621 0.84 0.008
2002 7.029 26,970 0.9932 123 45,061 15.1% 2,215 0.84 0.007
2003 7.101 31,309 0.9942 118 51,805 15.0% 1,871 0.84 0.006
2004 7.173 36,294 0.9951 113 59,501 14.9% 1,581 0.84 0.005
2005 7.246 42,015 0.9959 108 68,276 14.7% 1,336 0.84 0.004
2006 7.318 48,575 0.9965 103 78,276 14.6% 1,129 0.84 0.003
2007 7.390 56,089 0.9971 99 89,663 14.5% 954 0.84 0.003
2008 7.463 64,689 0.9975 94 102,622 14.5% 806 0.84 0.002
2009 7.535 74,524 0.9979 90 117,361 14.4% 681 0.84 0.002
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Lognormal severity, 7.5% trend, fit to starting & ending values
Rate change suppressed during experience period; includes medical trend and age effect, 32 to 61
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Implied percentiles of spend distribution
1980 and 2009 Dollars

Percentiles of Severity Distribution
Percentile 1980 2009 Plus Attrition

50.0% 230 1,873 98,009
90.0% 1,196 9,738 175,175
95.0% 1,908 15,540 220,669
99.0% 4,585 37,343 364,207

99.853% 12,251 99,773 697,422
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Regulator caps premiums to ensure affordability

 Model premium as R(X) = M – m + min(X, m)
– M = maximum premium charged to any insured 
– m = maximum “variable” premium, related to 

individual risk 
– M – m represents the market access fee or 

residual market load needed to ensure solvency
– M is a “policy” variable = set by policy maker 
– m is set by the constraint E(X) = E(R(X))

• m solves the equation M – m = Expense(m) 
• E(min(X,m)) + Expense(m) = E(X), so 

E(R(X)) = M – m + E(X) – Expense(m) = E(X)

 For simplicity assume insureds “opt out” if R(X) is 
more than double their (known) loss cost X, i.e. 
opt out if X < (M – m) the “market access fee”

 What is the critical level of CV where market 
starts to unravel?

0

200

400

600

800

1000

0 200 400 600 800 1000

Unrestricted Regulated Capped

M = 600
m = 525
Charge = M – m = 75

R(X)

min(X, m)
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Market dynamics

Premiums 
set for 

participants

Loss 
experience 
generates 

charge 
M – m

Insureds 
with costs 
less than 

charge exit 
market

Adverse 
selection 
increases 

costs
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Key variable = coefficient of variation (CV) of rating plan 

Range of 
outcomes

…
.

…
.

…
.

…
.

…
.

Classification risk 
retained by insured

Process risk transferred 
to insurer

 Key variable = variance of 
hypothetical means

 Essentially the variance of the 
premiums in the classification plan



Aon Center for Innovation and Analytics, Singapore | Proprietary & Confidential 25

For low to moderate CVs market is stable and charge small
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But instability develops…
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…above a critical level 



Aon Center for Innovation and Analytics, Singapore | Proprietary & Confidential 28

What about real world examples?

 Auto data
– CV of hypothetical means, i.e. classification means, is around 35%
– Stable behavior of simple model for volatility in the same range 

 Flood data
– CV of hypothetical means, i.e. classification means, is around 1.50 based on 

Aon Benfield Impact Forecasting riverine flood model and a sample of 
notional risks

– Highly skewed distribution; many risks have very low expected losses
– Unstable behavior of simple model for volatility in the same range
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